Self-Assembly, Condensation, and Order in Aqueous Lyotropic Chromonic Liquid Crystals Crowded With Additives
نویسندگان
چکیده
Dense multicomponent systems with macromolecules and small solutes attract a broad research interest as they mimic the molecularly crowded cellular interiors. The additives can condense and align the macromolecules, but they do not change the degree of covalent polymerization. We chose a lyotropic chromonic liquid crystal with reversibly and non-covalently assembled aggregates as a much softer system, reminiscent of ‘‘living polymers’’, to demonstrate that small neutral and charged additives cause condensation of aggregates with ensuing orientational and positional ordering and nontrivial morphologies of phase separation, such as tactoids and toroids of the nematic and hexagonal columnar phase coexisting with the isotropic melt. Scanning transmission X-ray microscopy (STXM) with near edge X-ray absorption fine structure (NEXAFS) analysis as well as fluorescent microscopy demonstrates segregation of the components. The observations suggest that self-assembly of chromonic aggregates in the presence of additives is controlled by both entropy effects and by specific molecular interactions and provide a new route to the regulated reversible assembly of soft materials formed by low-molecular weight components.
منابع مشابه
Oriented monolayers prepared from lyotropic chromonic liquid crystal.
We use a layer-by layer electrostatic self-assembly technique to obtain in-plane oriented aggregates of mesogenic dye molecules cast from lyotropic chromonic liquid crystals (LCLCs) on mica substrates. The aqueous solutions of dye used for deposition are in the nematic phase. Atomic force microscopy and X-ray photoelectron spectroscopy of the dried film reveal that the LCLC molecules adsorb at ...
متن کاملSelf-assembly of lyotropic chromonic liquid crystal Sunset Yellow and effects of ionic additives.
Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with ionic groups at the periphery that associate into stacks through noncovalent self-assembly while in water. The very existence of the nematic (N) phase in the typical LCLC, the dye Sunset Yellow (SSY) is a puzzle, as the correlation length associated with the stacking, as measured in the X-ray experiments, is too short to e...
متن کاملSelf-assembly in Lyotropic Chromonic Liquid Crystals
We have developed a class of idealized models of chromonic molecules which are miscible in water, but which can form aggregates which in turn organize into lyotropic liquid crystal (LC) phases. By carrying out Monte Carlo simulation in a binary mixture of model chromonic and water molecules, we have studied the effect of concentration and molecular shape on the nature of resulting mesophases. W...
متن کاملElasticity of lyotropic chromonic liquid crystals probed by director reorientation in a magnetic field.
Using a magnetic Frederiks transition technique, we measure the temperature and concentration dependences of splay K1, twist K2, and bend K3 elastic constants for the lyotropic chromonic liquid crystal sunset yellow formed through noncovalent reversible aggregation of organic molecules in water. K1 and K3 are comparable to each other and are an order of magnitude higher than K2. At higher conce...
متن کاملAlignment of high-aspect ratio colloidal gold nanoplatelets in nematic liquid crystals
We study elasticity-mediated alignment of anisotropic gold colloids in liquid crystals. Colloidal gold particles of controlled shapes (spheres, rods, and polygonal platelets) and sizes are prepared using well-established biosynthesis techniques with varying solvent conditions. When introduced into liquid crystalline structured solvents, these gold particles impose tangential or vertical surface...
متن کامل